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EXECUTIVE SUMMARY 

This report brings together the abstracts of the scientific presentations that will took place during the 
2nd INCITE Summer School & 4th INCITE Workshop, which was organised by TU Delft and was held in 
Delft, The Netherlands, on 9-13 July 2018. 

Scientific abstracts include the contributions from the invited speakers, whose lectures provided 
scientific and complementary skills training for the Early Stage Researchers (ESRs), as well as 
presentations of the progress on the Individual Research Projects (IRPs) by the ESRs. 

  



675318 

D6.6: Fourth Workshop Proceedings 

WP6: Dissemination and exploitation of results Version: v1.0 

Author(s): Bart De Schutter (TUD), Tomas Pippia 
(TUD), Marta Fonrodona (IREC) 

Security: PU 

 

Deliverable D6.6 -Project H2020-MSCA-ITN-2015 No. 675318 9 

1. INTRODUCTION 

The 2nd INCITE Summer School and 4th Workshop was held at the 3mE faculty of TU Delft in Delft (The 
Netherlands), 9-13 July 2018, and was hosted by TU Delft.  

During the Summer School part, training to the INCITE ESRs as well as to other students external to 
INCITE was focused, scientifically, on the topic of Energy Markets and Smart Grids, with scientific 
seminars from experts. Complementary skills training consisted in training about entrepreneurship 
and the formation of technological start-ups, and on how to apply for research grants. 

During the Summer School, the INCITE ESRs participated in an “Electricity market game”, provided by 
Professor Laurens de Vries from the Faculty of Technology, Policy, and Management of TU Delft. The 
objective of this game was to simulate the decisions made by companies operating in electricity 
markets. Moreover, Summer School attendants visited The Green Village, an institution related to TU 
Delft in which new ideas in the field of Smart Grids can be analyzed and tested from a technical, 
legal, commercial, and societal point of view. The Green Village hosts also the Car as Power Plant 
project, were ESRs took a test drive on board of one of the fuel cell vehicles available.  

During the Workshop part, the INCITE ESRs presented their latest research and the current status of 
their research projects, including results from the secondments that have already taken place. 

Formation about the creation of technological start-ups was provided by the technological incubator 
Yes!Delft, and the training on how to apply for research grants, focused on the IF Marie Curie 
Fellowship, was provided by Daphne van de Sande from the Valorisation Center at TU Delft. 
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2. PROGRAM 
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3. ABSTRACTS 

In the following pages, the abstracts of the ESR presentations can be found: 

 

WP1. Control strategies for distributed power generation 

 IRP1.1 – Improving Resiliency of Distributed Energy Management for Electrical Energy 
Systems (W. Ananduta) 

 IRP1.2 – Real-time Market-based Coordination of Heterogeneous Distributed Energy 
Resources  (H. Abdelghany) 

 IRP1.3 – Coordinating Energy Flexibility in the Electricity Distribution Grid (S. Chakraborty) 

 IRP1.4 – Warping model predictive control (J. Lago) 

WP2. Control strategies for energy storage systems 

 IRP2.1 – Use of a marginal CO2 emissions signal to activate the energy flexibility of building 
thermal loads (T. Péan) 

 IRP2.2 – Control and management of energy storage elements in micro-grids (U. Raveendran 
Nair) 

 IRP2.3 – Model Predictive Control Methods for Microgrids (T. Pippia) 

WP3. Control strategies for RES integration 

 IRP3.1 – A Statistical Physics Approach to Dynamic Coherency (or lack of) in Large HVDC Grids 
(A. Agbemuko) 

 IRP3.2 – A new modelling approach for stabilisation of smart grids (F. Koeth) 

 IRP3.3 – Wind farms control strategies for grid support (S. Siniscalchi Minna) 

WP4. Monitoring tools and secure operation of smart grids 

 IRP4.1 – Multistage Stochastic Optimization Programming for the operation of Local Energy 
Systems (C. Orozco) 

 IRP4.2 – A fault detection and localization method for LV distribution grids (N. 
Sapountzoglou) 

 IRP4.3 – Stochastic Optimal Power Flow in Distribution Grids under Uncertainty from State 
Estimation (M. Picallo) 

 IRP4.4 – A multi-period Optimal Power Flow scheme for Low Voltage Distribution Networks 
(K. Kotsalos) 

 

 



Improving Resiliency of Distributed Energy Management for Electrical
Energy Systems

ESR: Wicak Ananduta
Advisor: Carlos Ocampo-Martinez

Abstract— Electrical networks with distributed generation
units can be regarded as systems of interconnected microgrids.
The power management of such a system can be done using a
distributed model predictive control (MPC) method. However,
some agents might not cooperate for their own benefits. There-
fore, a methodology to improve the resiliency of the distributed
MPC scheme with respect to certain adversarial actions is
investigated.

I. DISTRIBUTED ENERGY MANAGEMENT

In the current development of electrical energy systems,
the microgrid concept becomes important, particularly as
a basis to manage power flows for electrical systems with
distributed sources [1]. A microgrid might consist of dis-
tributed generation units, loads, and storage units. Moreover,
it is capable to autonomously operate itself, i.e., has a local
control unit, which dictates the operation of all components.
Furthermore, a microgrid is also expected to be able to
operate in the island mode, in which the microgrid is
disconnected from the main grid.

By considering the preceding definition, an electrical
network might be considered as a group of interconnected
microgrids and the power management of this network can
be considered as an optimization problem of a multi-agent
network. Due to the interconnection among the microgrids
(agents), each agent needs to consider the influence of its
neighbor on itself and vice versa when managing its power
production. In this setup, the energy management problem
is suitable to be solved using a distributed approach. In a
distributed approach, a group of controllers cooperatively
compute their control inputs considering a global objective
and respecting coupling as well as local constraints. Further-
more, a distributed approach also requires the controllers to
exchange information with each other such that they can
agree with control inputs that are optimal.

On the other hand, renewable energy sources introduce
intermittency issues and additional uncertainties into the
network. The addition of energy storage units is considered
as one of the solutions to deal with those issues. However,
the local control units must then take into account the slow
dynamics of the storage. In a model predictive control (MPC)
approach, the dynamics are directly included in the compu-
tation and the uncertainties are handled by recomputing the
control inputs at each time step in a receding horizon fashion.

A combination of MPC and distributed approaches has
been proposed as power management in the literature. In
particular, MPC schemes that are based on dual decom-
position, alternating direction of multipliers (ADMM), and
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Fig. 1. An example of a distribution network partitioned into a group of
interconnected microgrids [2]. Squares indicate the distributed generation
units, i.e., � and � represent a renewable generation unit and a dispatcha-
bale generator, respectively, whereas crosses, ×, indicate the storages.

optimality condition decomposition (OCD) are some of
distributed MPC strategies that have been proposed to deal
with power management problems of electrical networks.
The main advantage of these strategies is that, given that the
problem is convex, the obtained control inputs approximate
the optimal solution from solving the problem centrally.

II. HANDLING ADVERSARIAL AGENTS

As previously discussed, the implementation of a dis-
tributed MPC strategy requires the cooperation of all agents
in the network. Therefore, when some agents do not coop-
erate, the performance of the system might deteriorate. One
possible adversarial behavior is that when some agents do
not comply with the control inputs that have been agreed
upon among the agents. In this case, although all agents
perform the distributed MPC algorithm to compute their
control inputs, the agents that do not comply implement
control inputs that are different than the computed ones. By
doing such actions, these adversarial agents might improve
their performances. Moreover, the performance of the other
agent degrades. It is worth to mention that very few papers
have reported a study on this kind of adversarial actions, e.g.,
[3] and [4].

Non-compliant actions performed by adversarial agents
can be considered as uncertain disturbances affecting the
system. Therefore, each regular agent must robustify its
control input such that the influence of these uncertainties
does not yield to infeasibility. Furthermore, by considering a
robust approach, uncertain disturbances of loads and power
generation from renewable sources can also be handled
at the same time. In a robust approach the worst case
of disturbances is considered in the optimization problem.



Therefore, the computed control inputs are feasible regard-
less the disturbances.

One of the issues that arises when deriving a robust ap-
proach is modeling the disturbance. A common assumption
used in some robust methods is the knowledge of the bounds
of the disturbance. However, such bounds might not be
obtainable. One way to deal with this issue is by formulating
a chance-constrained program, in which some constraints
are allowed to be violated with a predetermined level of
violation.

A stochastic method that can solve a chance-constrained
problem is called the scenario approach. In this method,
a number of uncertainty realizations or scenarios so that
the chance constraints can be replaced by a number of
hard constraints that use the scenarios. The authors of [5]
proposes a two-step stochastic method that is based on the
scenario approach. In the first step, probabilistic bounds of
the uncertainties are computed using the scenario approach
and in the second step, a robust counterpart of the chance-
constrained program that uses the probabilistic bounds is
solved. This methodology is suitable to be implemented in
the power management problem for systems with some non-
compliant agents.

In our initial study, we propose a robust program to deal
with the attacks [6]. At the moment, we are improving
the methodology by implementing the two-step stochastic
method in order to deal with the adversarial actions and
other uncertainties in the power management problem of
interconnected-microgrid systems. Besides being able to
compute control inputs that are robustly feasible with respect
to the adversarial actions and other uncertainties, the two-
step stochastic approach is also useful in the process of
identifying the adversarial agents. The probabilistic bounds
that are computed in the first step of the stochastic method
can also be used to detect an adversarial action. Based on
the detection, an identification method that uses Bayesian
inference is proposed. Moreover, the proposed identification
method also requires each regular agent to solve a local
mixed-integer program to determine the connection with
its neighbors. Once the adversarial agents are detected, the
regular agents can maintain the disconnection from these
agents.

III. CONCLUSION

A combination of a robust method and the identification
method based on Bayesian inference has been proposed in [6]
to deal with non-compliance issues in distributed MPC meth-
ods for management of interconnected-microgrid systems.
Further investigation to improve the proposed methodology
such that it can be implemented in a more general case is
needed.
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Real-time Market-based Coordination of Heterogeneous
Distributed Energy Resources

ESR 1.2: Hazem A. Abdelghany, TU Delft

I. INTRODUCTION
This work demonstrates the use of real-time market-

based control (RTMBC) to coordinate among nu-
merous, heterogeneous, distributed energy resources
(DERs) owned by self-interested users. We use the term
“RTMBC” to describe a setting where flexible and inflex-
ible DERs are represented by autonomous agents partici-
pating in a spot power market. Agents submit bids/offers
that are aggregated and the market is cleared in real
time by means of a double auction. Local constraints,
objectives and uncertainty are taken into account in the
process of bid/offer formulation.

Compared to other coordination techniques, RTMBC
provides a degree of end-user privacy and autonomy,
scalability, and openness to heterogeneity. However, such
a setting usually results in sub-optimal utilization of
DERs over time, instability, and inability to guarantee
system operability [1]. This is due to the following,

• Decentralization: lack of observable global system
state and lack of information about other agents lead
to mutually-conflicting decisions [2].

• Real-time operation: lack of planning ahead leads
to sub-optimal utilization of resources over multi-
ple time-steps, and sometimes leads to violation of
constraints and in-operability of the system [3].

When used for coordination among DERs , these fea-
tures of RTMBC lead to bulk switching, peak shifting,
instability and exhaustion of system flexibility [3], [4].

This work aims at solving the problem of mutually
conflicting decisions among different agents in our setting
(i.e. synchronous response of decentralized decision mak-
ers), and adding a planning ahead feature while main-
taining simplicity, privacy and scalability. We investigate
the use of RTMBC subject to the constraints imposed by
the setting. These are,

• Decentralized decision makers usually have access to
small computational capabilities [2], [5].

• Decisions are made in real-time.
Therefore, any solutions employed by the agents in our
setting must be computationally and communicationally
simple, fast and scalable.

This project has received funding from the Euro-
pean union’s Horizon 2020 research and innovation pro-
gramme under Marie Sklodowska- Curie grant agree-
ment No. 675318

II. MODEL DESCRIPTION
We consider a system with a large number of uninter-

ruptible time-shiftable devices owned by different agents
(i.e. flexible loads). Each device has a deadline, dura-
tion and constant power consumption. The model also
accounts for flexible generation with linearly increasing
marginal cost, inflexible load, and inflexible generation
which can be curtailed. To solve the optimal coordination
problem in settings where central optimization is not
possible (i.e. due to privacy, scalability constraints, etc.
), we use RTMBC. However, it is required to overcome
the problems of mutually conflicting decisions and lack
of planning ahead.

We propose a Markov decision process (MDP) based
bidding strategy for flexible agents, taking into account
probabilistic price forecasts. We show theoretically that
identical agents only differentiated by deadlines will
never have the same bid. Thus, creating diversity and
avoiding the problem of synchronous response (i.e. bulk
switching and peak shifting).

Moreover, we implement a test system where it is
shown that given probabilistic price forecasts, near-
optimal collective behaviour can be achieved.

As a reference solution we assume a central optimizer
has complete information about the system, and aims
at minimizing the total cost of generation over the
planning horizon. In the case of identical flexible loads
only differentiated by deadlines, the optimal coordination
problem can be modelled and solved as a Mixed Integer
Quadratic Program (MIQP).
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 

Abstract— To reliably operate an electricity distribution grid 

with a high penetration of RES, system operators need flexible 

resources that provide the functionalities of storing energy or 

modifying use, and reacting quickly to meet required operating 

levels. While at the industrial consumer level, demand response 

has resulted in significant reductions in energy demand, the 

provision of demand-side flexibility at the residential and 

commercial consumer level, remains an area of active research 

that is currently being explored.  

      Energy flexibility through aggregator function is 

expected to provide services to the DSO for addressing issues of 

congestion management, voltage regulation and accounting for 

line losses at the distribution grid. End-customers at the 

distribution grid can also benefit from their interactions with 

the DSO and aggregators to hedge against electricity price 

volatility. The DSOs can be viewed as key players for enabling 

a successful energy transition, in which they are expected to 

guarantee distribution system stability, power quality, technical 

efficiency and cost effectiveness in a smart grid that has a high 

integration of variable RES generators. For accomplishing its 

goal, coordination between the DSO and aggregators is crucial 

and further clarity on this topic is required. In the light of this 

requirement, the purpose of this project is to shed light on the 

coordination of energy flexibility between the DSO, 

aggregators, and end-customers in a future electricity grid that 

has a high integration of RES. 

I. INTRODUCTION 

Large scale integration of distributed energy sources, such 
as wind and solar, pose both advantages and challenges in the 
power system. While it positively contributes to the reduction 
of carbon footprint of electricity, its intermittent nature leads 
to a high level of uncertainty and variability in the 
management of the grid. Price volatility [1], voltage 
deviations and congestion management [2] are a few of the 
issues that arise due to the variability. Increasing energy 
flexibility at the distribution grid is viewed as one of the 
possible solutions to address the issues emerging from high 
integration of RES. Aggregators provide an opportunity to 
aggregate flexibility provision from small-scale residential 
and commercial consumers and offer these flexibility 
services to the system operators such as the Transmission 
System Operator (TSO) and Distribution System Operator 
(DSO) through markets such as ancillary service markets or 
through bilateral contracts.  

Hence, an important cornerstone of this project is to 
investigate the coordination of energy flexibility between 
DSO, aggregator, and end-customers in a future electricity 
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distribution grid that has a high integration of RES. The rest 
of the abstract is organized as follows; Section II provides a 
literature review and identified research gap, Section III 
presents the research proposal and planned methods. 

II. COORDINATING FLEXIBILITY: STATE-OF-THE-ART 

 From literature, previous works on coordinating energy 
flexibility at the distribution grid have mostly considered 
either the DSO perspective only or only that of the market-
driven aggregator [3]. In our research, we focus on the two 
perspectives simultaneously. There are several knowledge 
gaps identified in literature regarding coordination of energy 
flexibility which will be addressed in the course of this 
research.  

Firstly, it is observed from previous works that the 
aggregators are primarily concerned with maximizing  their 
profits while the impact of their actions on the distribution 
grid are largely not considered. In addition, the possibility of 
the aggregator to provide hedging against price volatility by 
using flexibility has received limited attention [4].  

Secondly, currently there is limited knowledge available 
regarding institutional arrangements that facilitate the 
coordination between DSO, aggregators, and end-customers, 
and their impacts on the distribution grid operation. Market 
mechanisms for local flexibility markets [5], quota based 
models [6], grid capacities [7] have been theorized, but they 
lack a mathematical formalism, without which it would be 
challenging to perform a quantitative assessment of the 
coordination mechanism in terms of voltage profiles, grid 
congestions and line losses.  

Finally, in the future, it is expected that more aggregators 
would connect to the grid. In such a distribution grid, the 
DSO will be required to coordinate with multiple 
aggregators. Previous studies on this topic have assumed a 
hierarchical centralized approach [8] for minimizing network 
operation costs and reducing network peak loads. However, 
in such an approach aggregators are required to share 
sensitive information with each other, which could 
compromise privacy of aggregator operations and their 
customer profiles. Furthermore, in previous studies, simple 
models of the distribution grid have been assumed which are 
not able to account for power losses and congestions in the 
distribution grid. 

 Hence, we would like to summarize our research with the 
main research question, “What coordination strategies are 
required between DSO and aggregators in a future electricity 
distribution grid with high RES penetration to address issues 
of price volatility, voltage regulation, congestion 
management and accounting for line losses?”    
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III. RESEARCH PROPOSAL AND PLANNED METHODS 

A. Using Flexibility to Hedge Electricity Price Volatility 

To address our main research question, we will break 
down the problem formulation into multiple steps. The first 
step, is to determine a possible strategy for coordinating 
flexibility between DSO, aggregator and end-customers to 
hedge against electricity price volatility while accounting for 
energy costs and grid constraints [9].  

For doing so, we make use of Locational Marginal Prices 
(LMP) which is a dual variable associated with supply-
demand matching. The LMP represents the price that is paid 
by a customer at a given location, and in recent times has 
become highly volatile due to increased integration of RES 
that are intermittent. Motivated by this problem, our research 
conducted in [10] constrains dual variable in an optimal 
power flow (OPF) formulation to determine the amount of 
flexibility required to limit the rise of LMP. In our research, 
we propose an organizational structure for flexibility 
management, in which an end-customer can specify its 
maximum willingness to pay for electricity and through the 
coordination between the DSO and aggregator the flexibility 
required for satisfying the price constraints can be 
provisioned. A pictorial view of the problem setup is as 
follows: 

 

 

In the above equation, PG and PL represent the magnitude 
of power generation and load consumption. P

flexreq
 

corresponds to the magnitude of flexibility required to ensure 
that the LMP at node 3 is less than or equal to the maximum 
willingness to pay for electricity of the end-customer which 

is specified value as “
des

”. The main novelty of this 
approach is that it investigates the possibility of using 
flexibility to hedge electricity price volatility due to increased 
integration of RES. Furthermore, we propose a new demand 
side bidding strategy that is based on price only bids and 
incorporate them directly into the optimization problem. 
Future work will focus on different contractual arrangements 
for flexibility management, incorporating inter-temporal 
constraints and including line losses in the computation of the 
LMP. 

B. Co-Simulation of Fuel Cell Electric Vehicles   

Using the institutional arrangement conceptualized and 
depicted here, we focus on quantifying the impacts of this 
arrangement on the operation of the grid. For doing so, we 
will use a co-simulation based approach, in which we 
consider a fuel-cell based electric vehicle (FCEV) aggregator 
in the context of urban areas, that comprise of both 
commercial and residential loads. 

 

We use a co-simulation environment, in which the social 
layer comprising of data models for prosumers, consumers, 
aggregators and DSO with the technical components of the 
grid which are modeled using Simulink are coupled. The 
developed model will be executed using real-time digital 
simulators, and through this setup we will investigate the 
coordination of increased integration of PV in the distribution 
grid with flexibility provided by EVs. Furthermore, we 
investigate the impact that different ownership structures car-
sharing/private ownership has on flexibility provision. The 
main output of this research will be smart charging strategies 
for FCEVs for addressing issues of voltage regulation, 
congestion management and line losses using centralized and 
fully distributed optimization.  

C. Distributed Optimization for Flexibility Coordination 

Fully distributed optimization will be used for extending 
the simulation to account for multiple aggregators and price 
requesting loads. The chosen approach, enables us to address 
issues of scalability and ensuring data privacy. A benchmark 
implementation is provided in [11] and work on adapting the 
problem formulation to account for different network 
configurations and reducing the number of iterations required 
for convergence, and asynchronous communication will be 
published shortly. These developed models will be tested on 
Representative Network Models [12] to quantify flexibility 
required and optimize network performance.    
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Warping model predictive control

Jesus Lago

I. INTRODUCTION

In most advanced control processes, the plant optimization
is typically divided into two levels: a first level where the
plant optimal operational steady-state is computed and a
second level that receives the operational point and regulates
the plant [1]. One choice to implement the second level is
nonlinear model predictive control (NMPC) [1], a control
scheme that uses the plant model to track the operational
setpoints. A variant of this algorithm is a scheme that, instead
of computing and tracking a steady-state point, considers
a time-varying optimal trajectory. In this scenario, if the
second level uses NMPC to track the optimized trajectory,
the resultant control scheme is known as tracking NMPC [1].

A field where this control scheme is especially relevant is
airborne wind energy (AWE) [2], a novel type of renewable
energy that harvests energy from the wind using flying kites
or planes. In order to maximize the harvested energy from
the wind, the airfoils have to fly optimal trajectories. In
this scenario, assuming that the flying trajectories can be
computed offline, tracking NMPC offers a fast and feasible
solution to maximize the harvested energy and help AWE
system to be integrated in the electrical grid.

II. MOTIVATION AND CONTRIBUTIONS

While stability theory for tracking NMPC has been de-
veloped [1] and despite the algorithm being successfully
implemented in different scenarios, it suffers from various
issues. First, if the trajectories are computed offline, the
controller lacks online adaptation to real disturbances and
model mismatches. Second, even if the tracking trajectories
are recomputed online, the time required to compute a new
optimal trajectory introduces delays between the first and
the second level [1]; if the system has fast dynamics, these
delays prevent the first level to react in time to environmental
changes. In both scenarios, if the environmental conditions
change, the precomputed trajectory might no longer be
optimal nor even feasible.

A field where these problems are especially relevant is
AWE as the energy extracted is dependent on the flight
trajectory and the the trajectory depends in turn on the wind
velocity and direction. As these two atmospheric properties
vary in the matter of seconds, any controller that aims at
optimally flying an AWE system needs to perform online
generation of flying trajectories. However, considering that
the models proposed for AWE systems [3], [4], [5] typically
consist of a state space with 4–15 states and highly nonlinear
dynamics, obtaining optimal trajectories is not trivial: com-
plex nonlinear optimization problems need to be solved [5],

*This research has received funding from the European Unions Horizon
2020 research and innovation programme under the Marie Skodowska-Curie
grant agreement No 675318 (INCITE).

[4], which not only require long computation times, but can
even lead to failures of the optimization solvers [4]. In this
scenario, tracking NMPC becomes unstable and suboptimal.

In this paper, to address the mentioned problems, we
present warping NMPC, a control algorithm that tracks opti-
mal trajectories that are updated online at no computational
cost. The algorithm is based on warping theory [6], a frame-
work that is based on two key concepts: warpable systems
and warpable optimal control problems. The contributions of
the paper are 2:

1) An algorithm, i.e. warping NMPC, that uses the de-
fined theory to implement a tracking NMPC scheme
that computes optimal trajectories in real time.

2) Application of the algorithm to the simulation of a real
system, i.e. an AWE system, showing how the control
algorithm can, under real life conditions, track optimal
trajectories that change in time.

III. CONCEPTUAL IDEA OF WARPING

For the considered AWE system, if its optimal trajectories
are regarded as a function of the wind speed vw, a very
interesting phenomenon can be observed: as depicted in
Figure 1, the periodic optimal trajectories at different wind
speeds represent the same 3D flight paths.
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Fig. 1: 3D views of the optimal trajectories for different vw
values.

However, when these trajectories are regarded in the time
domain, it can be observed how, while all optimal trajectories
make the kite fly through the same physical locations, the
velocity of the kite at each trajectory is different. More
specifically, while the trajectories are the same, the time
it takes for the kite to fly them is dependent on the wind
velocity. This effect can be further explained looking at
Figure 2, which illustrates the periodic optimal trajectories
of two of the states for different wind speeds and in different
time frames.

As these trajectories are the same in the 3D space but
different in the time domain, they can be interpreted as
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Fig. 2: Top: Optimal tether length l for different vw values.
Bottom: optimal l for different vw values but defined at three
different time frames.

time warped versions of each other. In particular, an optimal
trajectory for a certain wind speed could be obtained by
squeezing or extending. i.e., warping in time, the optimal
trajectory at any other given wind speed. This concept of
translating between optimal trajectories at different wind
speeds is defined as warping, and it is the basic concept
underlying the warping NMPC model.

IV. WARPING NMPC

The proposed algorithm uses the theoretical foundations of
warping theory to build a tracking NMPC scheme that can
compute tracking trajectories in real time. While the details
of the algorithm are out of the scope of this abstract, the
basic scheme goes as follows:

1) Select a reference parameter/disturbance pref , e.g. vw
in the AWE system, and compute the optimal trajectory
Y ∗(pref) w.r.t. to it.

2) Measure the real parameter p, and obtain the optimal
trajectory for Y ∗(p) by warping in time Y ∗(pref).

3) Use the warped trajectory as a tracking trajectory in
tracking NMPC.

4) Repeat this process at each control time step.

V. CASE STUDY

To test the proposed control scheme, the algorithm is
tested using the realistic plant simulator developed by the
AWE company Skysails. As a test case, we consider the
Skysails kite harvesting energy under a realistic wind speed
profile that drops in 25 minutes from 10 m/s to 6 m/s and we
compare warping NMPC against a normal tracking NMPC
scheme that uses a constant tracking trajectory generated
at vw = 10m/s. The comparison is illustrated in Fig. 3,
which depicts the 3D pumping cycle trajectories at the end
of the simulation interval, and Table I, which compares the
efficiency of the two control schemes in the last pumping
cycle.

Considering the obtained results, the following observa-
tions can be made:

TABLE I: Warping NMPC comparison considering a nomi-
nal wind speed profile decrease from 10 m/s to 6 m/s.

NMPC Scheme Lloyd Efficiency (maximum 35%)

Tracking NMPC -3.41 %

Warping NMPC 30.47 %
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Fig. 3: Comparison between normal NMPC and warping
NMPC in a real plant simulator.

1) Due to the disturbances, tracking NMPC is unable to
harvest any energy, i.e. it displays a negative efficiency.

2) By contrast, warping NMPC obtains an efficiency of
30.47 %, which is very close to the ideal 35%.

3) Warping NMPC not only obtains a good efficiency, but
it is also able to keep the flying trajectories very close
to the optimal one.

VI. CONCLUSION

Warping NMPC was presented as a NMPC scheme that
allows tracking optimal trajectories at the same computa-
tional cost as tracking NMPC. Using a AWE system we
have shown that, while a traditional tracking NMPC fails
to harvest energy and makes the system unstable, warping
NMPC obtains a nearly ideal performance and keeps the
system in a periodic and stable trajectory.
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 

I. INTRODUCTION 

Demand-side management (DSM) consists in acting on the 
loads rather than on the generation side, in order to ensure the 
stability of the electrical grid. Such operation can be triggered 
with different input signals such as the electricity price, the 
CO2 emissions of the energy mix, the residual load of the grid, 
or even combinations of these parameters. DSM control 
strategies will then intend to shift the loads to periods where 
the input signal presents a more favorable situation (a lower 
price for example). 

In the literature, the impacts of DSM strategies in terms of 
CO2 emissions are usually calculated with average values. In 
the present work, the marginal emissions factor (MEF) has 
been used, which provides a more accurate calculation of the 
CO2 emissions savings due to DSM interventions. The 
marginal emissions correspond to the quantity of CO2 
emissions which are avoided for every kWh of electricity 
saved at a certain moment. It highly depends on the national 
context and the energy mix of a country [1]. 

II. DESIGN OF A MARGINAL CO2 EMISSIONS SIGNAL 

To calculate the MEF at national scale in Spain, the 
following steps have been followed: firstly, the hourly data of 
the energy mix have been retrieved from the Transmission 
System Operator (TSO) [2]. The data contains the breakdown 
of the electricity production for every hour, detailed per energy 
source. Considering the CO2 emission coefficients of each 
energy source [3]1, the average CO2 emission factor (EF, in 
kgCO2/kWh) can be computed for every hour of the year. 
Secondly, two time series are calculated: the difference in the 
system load and the difference in the average CO2 emissions, 
from one data point to the next. These data are represented as 
a scatter plot in Figure 1. 

From this figure, the overall MEF can be derived: it 
corresponds to the slope of the linear regression, here 0.238 
kgCO2/kWh (for comparison, the average MEF found by [1] 
for Great Britain was 0.69 kgCO2/kWh) . However, it is 
observed in Figure 1 that the data points are relatively 
scattered. In fact the MEF varies substantially at different 
scales, both seasonally and according to the system load, the 
time of the day or the proportion of renewable energy sources 
(RES) in the energy mix. For this reason, the data points of 
Figure 1 have been clustered according to the following rules: 
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Figure 1. Average MEF (0.238 tCO2/MWh) in the Spanish 
electricity mix, based on hourly data from 2016. 

 

- First the data are clustered per ascending system load, 
into 10 clusters of equal size (same number of data 
points), 

- Inside these 10 datasets, the data are then clustered 
per proportion of RES (from 10% to 70% and with 
steps of 10%), with at least 50 points. 

- For the data points of each obtained cluster, a linear 
regression similar to the one presented in Figure 1 is 
realized, to obtain the MEF of the cluster.  

The resulting MEF values are plotted in Figure 2 with 
colour mapping, in function of both the average system load 
and the RES share of the clusters. These MEF values have 
been obtained with an average correlation coefficient of 76% 
in the different clusters, thus the linear regression results are 
considered reliable. 

Figure 2 clearly demonstrates the dependency of the CO2 
MEF with the RES share and the national load. When both the 
RES and the load are low, the MEF reaches higher values, 
because the remaining base load must be covered with CO2 
emitting sources. At middle load levels and high RES share, 
the MEF displays its lowest values: at these points, there is 
enough margin to increase the load and benefit from the high 
availability of renewable sources. Finally, when the load is 
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high, the dependency of the MEF on the RES share tends to 
disappear. 

 

Figure 2. MEF calculated per clusters of RES share and system 
load (data for Spain from 2016). 

To obtain a more direct expression of the MEF, a quadratic 
fit is derived from the data points presented in Figure 2. The 
equation of this model is shown in (1), with 𝐿 the system load 
(GW), 𝑅 the RES share (%) and 𝑎𝑖 the fitting coefficients. The 
comparison between the model and the data points is 
represented in Figure 3. The model is fitted by minimizing the 
root mean square error (RMSE), which reaches the value of 
𝑅𝑀𝑆𝐸 = 0.00062 𝑘𝑔𝐶𝑂2/𝑘𝑊ℎ or as a normalized value: 
𝑁𝑅𝑀𝑆𝐸 = 0.28%. 

𝑀𝐸𝐹 = 𝑎0 + 𝑎1𝑅 + 𝑎2𝐿 + 𝑎3𝑅2 + 𝑎4𝐿2+𝑎5𝑅 ∙ 𝐿       (1) 

 

Figure 3. Quadratic model of the MEF in function of the RES 
share and the system load. The data points (same than Figure 2) are 
only shown as dots, while the model is represented with solid lines 

of a similar colour.  

When analysing a particular period of time, the MEF can 
then be obtained by applying (1) to the time series of the power 
grid. An example is represented in Figure 4: the system load 
and the RES share enable to calculate the MEF thanks to the 
quadratic fit equation. The MEF and the average EF curves 
globally follow the same trends. However, the MEF displays 
variations of larger amplitude than the average EF, and 
therefore leaves more room for optimization, which is the main 
reason behind the whole MEF signal calculation. 

To interpret the curves, it should be reminded that a low 
MEF corresponds to a favourable case to use electricity (the 
related CO2 emissions will be lower), while a high MEF will 
trigger higher emissions. It should be noted that for instance, 
the MEF signal shows a clear valley around midday. This 
situation is foreseen to amplify in the future: in [4], the authors 
have analysed the energy mix of Spain in 2030 and deduced 
that it will be more profitable to use energy during day hours 
for a grid-optimal scenario (i.e. when the residual load is 
negative, due to the importance of solar-based energy). 

These statements are highly dependent on the country, the 
energy mix, and the dispatching of the energy sources within 
the grid. The operation of the grid also influences greatly the 
MEF calculation: for instance in Spain, mainly hydropower 
and gas are used to absorb the daily load fluctuations, while 
another management strategy would probably lead to different 
results in terms of marginal emissions. 

 

Figure 4. Time series of both the CO2 EF and MEF, for a few 
days of February 2016. 

III. CONCLUSION 

The calculation method of the MEF is validated through the 

presented study, and the signal was obtained for the Spanish 

case. Further tests have been carried out using this signal as 

an input for rule-based control strategies aiming to reduce the 

CO2 emissions of building thermal loads (supplied with heat 

pumps), hence unlocking their flexibility potential. 
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Control and management of energy storage elements in micro-grids

Unnikrishnan Raveendran Nair, Ramon Costa-Castelló
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Abstract— Energy storage systems are becoming an integral
part of the present day grids in aiding the penetration of
renewable energy sources. An effective control strategy for
storage systems is essential in the effective integration of such
systems. An overview of the control architecture and a low level
controller for energy storage systems is presented here.

I. INTRODUCTION
The paradigm shift of the electric power system from

its reliance on fossil fuels as energy sources to renewable
sources have been contributed by the increasing price of the
fossil fuels, the various government policies, incentives and
protocols for capping carbon emissions [1] [2] [3]. There-
fore, modern electric network is seeing a major overhaul
by shifting from the traditional centralised to distributed
generation. The distributed generation through renewable
energy sources(wind, solar) add varying, fluctuating power
into the grid, independent of the demand, which can affect
the grid stability if the supply demand balance is not met.
They also reduce the inertia of the grid due to the absence
of any rotational inertia making the grid more susceptible
to instabilities during events of sudden load change. The
increased drive to incorporate more renewable sources into
the grid therefore demands integration of Energy Storage
Systems(ESS) in the grid which ensures supply-demand
balance, spinning reserves and improved grid inertia [5] [6].

This paper presents an overview of the work done so far
in relation to the research work of ESR2.2 in the INCITE
project. The objective is developing a control system that
ensures stable and efficient integration of ESS in the electric
grids. Some results in the primary and secondary control
levels for integration of ESS in microgrids is presented here.

II. CONTROL ARCHITECTURE FOR STORAGE SYSTEMS

Fig. 1. Control architecture for the ESS

The Fig.1 shows control architecture for ESS considered
by the ESR for the integration of ESS into grids. The

hierarchical control scheme has the system divided into three
levels: physical control level, primary+secondary, tertiary and
central grid control unit.

Physical control level: This level deals with control of
power converters which are interfacing the ESS to grids.
These converters are required to respond fast to ensure
minimum variation in grid parameters. The fast flat response
will be ideal to improve the power quality. The controllers
at this level should be capable of such a response.

The primary level: This level is responsible for ensuring
disturbance rejection in the microgrid. In an interconnected
system like the microgrid sudden unaccounted load changes
can cause variation in grid parameters. The primary level
ensure that these variations are met and distributes it among
the differnt ESS based on their characteristics. A frequency
based splitting of the load will be done here.

The secondary level: It ensures that parameters (voltage,
frequency etc) in the micro-grid are within the permissible
range. The restoration to nominal values are achieved here.

The tertiary level The tertiary level forms supervisory level
for the microgrid. This level ensures optimal power flow in
the microgrid especially in islanded mode of operation. The
optimal power flow problem decides the amount of power to
be generated by the different sources so that some operational
parameters are optimised. [7].

Central grid control unit This level supervises the oper-
ation of main grid . This level optimises main grid perfor-
mance, decides which microgrid has to be connect to grid
and energy exchange between different microgrids.

III. RESULTS

The initial work of the ESR focussed on the development
of low level control for the power converters with emphasis
on developing a reset controllerfor power converter. The im-
provement in the performance of the converter when catering
to sudden load changes through minimisation of overshoot
and faster settling time was highlighted in the previous
works. Currently the ESR has developed a reset control
based primary+secondary control scheme for a microgrid
with hybrid storage system. The proposed architecture is
shown in Fig.2. The control architecture was first devel-
oped under the assumption that the load data is known
a priori. This assumption is reasonable as there will be
higher levels in the real system which can estimate this
value. The control architecture is basically made of three
loops: the FC current control loop, the SC current control
loop and voltage regulation loop. The objective here is to
analyse the performance of the interconnected system when



Fig. 2. Control architecture for the proposed system

the PI controller is replaced with the PI+CI controller. A
simple rule for the power splitting is considered here. The
FC converter will be provided with the load profile in the
form of current reference (irload) as shown in Fig.2. The FC
control loop ensures that the reference value is followed.
The FC control loop is designed slower than that of the SC
control loop so that the FC does not meet the sudden load
changes instantaneously but slowly ramp up and meet the
reference value. The SC control loop is part of a multi-loop
architecture. The outer loop is a voltage control loop which
is tasked with maintaining the grid voltage (Vbus) at the
nominal value thus regulating the DC bus voltage. The inner
loop is the current loop which works on the reference from
outer loop such that sufficient current is injected into the grid
to ensure the grid voltage remain within prescribed range.
Employing such a control architecture for the SC ensures that
when the demanded load level changes the voltage difference
created by the load imbalance as the FC ramps up in power
will activate the SC outer loop causing the SC to supply
the deficient power. Through this, sudden changes in load
requirement will be met by the SC and larger imbalances by
FC.
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Fig. 3. Schematic of PI+CI controller

The design of parameters for the PI+CI controller shown
in Fig.3 used in the control loops (shown as R in Fig.2)
like the proportional, integral gains and the reset ratio (ρr)
is done as highlighted in the previous reports of the ESR.
The comparison of PI+CI controller based voltage regulation
control and PI based control is presented next. The Fig.4
shows current drawn from the grid under varying load profile
(top) and the comparison of the DC grid voltage profile under
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the load variation for a system employing a PI+CI controller
and PI controller (bottom). It can be noticed from Fig.4 that
when the load variation is introduced in both systems there
is a deviation in grid voltage until the first instance of zero
error (nominal value). After this the reset action introduced
by the reset controller of the voltage regulating loop ensures
that grid voltage remains at the nominal value bringing the
system controlled by PI+CI controller into steady state. In
comparison the PI based systems as can be seen in Fig.4
takes a longer time to settle with more ringing in the grid
voltage. This represents a clear improvement in voltage
regulation performance achieved by reset PI+CI controller.

The Fig.5,6 represent the distribution of load current
among the different ESS for system with PI and PI+CI
controller respectively. The FC delivers major portion of the
load current in both cases and the SC supplies the demanded
load current when the FC ramps up in power. It can be seen
from the comparison in Fig.5 and 6 that the overshoot in the
current delivered by the FC and SC converters are avoided
using the PI+CI controller. The flat response achieved by the
reset controller is clearly visible in Fig.6.
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IV. RESEARCH STATUS

Presently the work done by the ESR is focussing on the
development of an observer based control scheme for the
estimation of the load demand in the grid based on the grid
voltage profile. This scheme will be be aided by a tertiary
control scheme that will be developed to ensure optimal
distribution of power among different sources. The proposed
tertiary scheme will work on predicted voltage and load
profiles to provide an optimal power distribution set points
for the different storage units. The optimisation algorithm
will be designed to minise the rate of degradation of the
different storage systems.
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Model Predictive Control Methods for Microgrids
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I. INTRODUCTION

The concept of microgrids has been recently studied in the
scientific literature due to the benefits that this architecture
offers [1]–[3]. Microgrids can improve reliability, reduce
the carbon emissions, and provide economic operation by
reducing transmission and distribution costs [3]. Microgrids
can also provide economical benefits because, by using
information on predictions of renewable energy profiles
and loads and on time-varying prices, a control strategy
can be designed such that it provides optimal inputs that
minimize an economical cost. In this regard, some works
have proposed different Model Predictive Control (MPC)
approaches for optimal operation of microgrids, e.g. [4]–
[7]. The microgrid is modelled as Mixed Logical Dynamical
(MLD) system [8], which means that the model includes
both continuous and binary variables. Applying an MPC
scheme to an MLD system yields a Mixed Integer Linear
Programming (MILP) problem. This kind of problems can
be solved by branch and bound solvers, but the problem
has in general an exponential computational complexity. One
way to mitigate this could be to parametrize the inputs in
the model as in [9], such that the parameters of the control
law, and not the control inputs, are optimized. A reduction
in computational complexity can be achieved if the number
of parameters is less than the number of inputs. Another
possible solution could be to combine MPC with some
heuristic or rule-based rules, in order to improve the speed of
the optimization procedure. In this abstract, we present two
different MPC methods for an energy management system
of microgrids. The first method expresses the inputs as a
function of the parameters and other variables; the second
method assigns the values to the binary variables in the
MLD model and reduces the optimization problem to a linear
programming one.

II. MODELING

We follow the modeling approach from [4]. Variables re-
lated to the microgrid are described using an MLD modeling
framework. The states of the model represent the level of
charge in the energy storage system and their dynamics are

xb(k + 1) = xb(k) + Ts

(
ηc,b −

1

ηd,b

)
zb(k) +

Ts
ηd,b

Pb(k),

where xb represents the level of charge of the battery,
Ts is the sampling time, ηc,b, ηd,b represent the charging
and discharging efficiencies, respectively, Pb is the power
exchanged with the energy storage system, zb is an auxiliary
variable used in the MLD model, and k is the current time

Main

Microgrid

�attery

Loads

Production

Units





Grid

Fig. 1. Microgrid scheme considered for our work. Arrows represent power
flows.

step. The system is subject to many constraints, e.g. lower
and upper bound constraints, generator constraints. However,
the most important constraint is given by the internal power
balance of the microgrid:

Pb(k) =

Ng∑
i=1

P p
i (k) + Pres(k) + Pgrid(k)− Pload(k), (1)

where P p
i is the power produced by the local dispatchable

generator i, i ∈ {1, . . . , Ng} with Ng the total number of
dispatchable generators, Pres the power produced by the local
renewable energy sources, Pload the local power demand, and
Pgrid the power exchanged with the main grid. Constraint
(1) has to be satisfied at all times. Note also that in (1) we
express Pb as a function of all the other variables, thus (1)
can be used to eliminate Pb from the optimization problem
within the MPC problem. Therefore, the it is possible to
optimize only Pgrid and P p

i , i ∈ {1, . . . , Ng}.
We also consider time-varying electricity prices, such that

prices for purchase and sale of electricity are different. We
denote with csale and cpur the price for selling and purchasing
electricity to and from the main grid, respectively. We also
consider a fixed tariff cprod for producing electricity with the
local production units.

III. PARAMETRIZATION OF CONTROL INPUTS

In the first approach that we propose, the control inputs are
parametrized as a function of parameters and other quantities
such as the electricity prices, inspired by [9]. The idea is to
express the inputs as a combination of different terms that
are weighted by some parameters. The two control inputs to
be optimized are Pgrid and P p

i and they are parametrized as

Pgrid(k) = −θ1cpur(k)− θ2csale(k) + θ3fbal(k − 1) (2)
P p
i (k) = θ4Pload(k) + θ5cpur(k) + θ6 (xb − xb(k)) (3)



where fbal(k − 1) = −Pload(k − 1) + Pres(k − 1) +∑Ng

i=1 P
p
i (k−1) represents the local power balance between

production and consumption at the previous time step and xb
is the maximum energy storage level of the battery. The idea
behind the parametrization (2)-(3) is to have different terms
that are weighted by the parameters θ1-θ6. The objectives in
(2) are defined in such a way that less power is imported
from the grid if the purchase price or the sale price is high,
while more power is imported if at the previous time step
the microgrid was not able to satisfy the local loads with its
internal power production resources, i.e. renewable energy
sources and dispatchable generators. The objectives in (3)
are similar: more power is produced locally when the loads
are high, when the price for importing electricity is high, and
when the battery has a low storage level.

Note also that the parameters θ1-θ6 are not time-varying.
This means that the same parameters are used for the whole
prediction horizon and therefore, in this case, we have only
6 optimization variables. This can provide computational
savings if the number of inputs is higher than 6, which is
translated into a prediction horizon larger than 3, since we
have two control inputs in this case.

IV. IF-THEN-ELSE RULES FOR THE BINARY DECISION
VARIABLES

In this second method, we follow a completely different
approach. Instead of parameterizing the inputs as a function
of the parameters, we assign the value to the binary decision
variables in the MLD model by following if-then-else rules.
Then, after all the binary variables have been assigned, the
optimization problem is transformed from an MILP problem
to a linear programming one, yielding great computational
savings.

The if-then-else ruling is based on two main questions:
is Pres(k) ≥ Pload(k)? Is cprod(k) < csale(k) < cpur(k) or
csale(k) < cprod(k) < cpur(k), or csale(k) < cpur(k) <
cprod(k)? Based on the answer to these questions, the
controller makes different decisions and assigns the values
to the binary variables in the MLD model.

We show now an example of how the if-then-else rules
work. Suppose that Pres(k) < Pload(k) and that cprod(k) <
csale(k) < cpur(k). In this case, the renewable energy sources
are not able to completely satisfy the local loads, thus the
local net imbalance is negative. Energy has to be produced
locally, and since the production price of electricity is smaller
than the purchase price, we turn on the dispatchable units.
We allow the extra power produced by these units to be sold
to the main grid, or to be stored in the battery. If, instead,
we had csale(k) < cpur(k) < cprod(k), it would be more
expensive to produce electricity locally rather than buying
it, and then the production units would be turned off and we
would set the power exchange with the grid to the import
mode. Moreover, in order to reduce the cost, the battery
would be allowed to provide some of the stored energy.

Based on this if-then-else rules, the unit commitment
problem and the problem of choosing the mode of operation
of the battery, i.e. charge or discharge, and of the power

exchange with the main grid, i.e. import or export, are solved
by the if-then-else rules. Then, during the MPC optimization
procedure, a linear programming problem is solved, which
is much faster than an MILP. The optimization variables in
these case are again Pgrid and P p

i , i ∈ {1, . . . , Ng}.

V. CONCLUSIONS

We have presented two different MPC methods for optimal
operation of microgrids. In the first method, we express
the control input as a function of the parameters and other
variables, while in the second method we assign the value to
the binary decision variables through an if-then-else ruling.
Both methods reduce the computational complexity, since
they either reduce the number of optimization variables or
they convert a MILP problem into a linear programming one.

A thorough comparison of the proposed methods opposed
to the standard approaches in the literature will be carried
out to assess the benefits of our approaches.
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Abstract—This paper studies the coherency of large-scale
HVDC networks from a theoretical perspective based on a
statistical physics approach. A theoretical analysis of twelve
terminal, 18 cable HVDC network is carried out.

Index Terms—Coherency, networked systems, statistical
physics

I. INTRODUCTION

The increasing penetration of renewable energy sources
(RESs) and emerging technologies has meant that power
electronic converters are becoming the fundamental building
blocks of future networks. A general consensus in power
systems is the expected role of power electronic converters
and DC circuits. Particularly, it is expected that a DC grid
would share a similar responsibility as the existing AC grid or
even take on the entire responsibility. This is expected to bring
in an entirely new dynamics on the system. Therefore, more
effort is needed in extensively understanding the DC grid.

It is widely expected that into the future, multi-terminal
high voltage DC (HVDC) circuits and systems would emerge
from the current HVDC link structure. Therefore, it is impor-
tant to understand the impact of topological properties and
aggregate behaviour of large-scale HVDC networks. From
the perspective of the conventional AC grid, the research
community have applied the concept of coupled oscillators to
understanding the oscillatory behaviour of synchronous gener-
ators connected over large networks. Especially the impact of
topological features, network, control, and overall coherency
of the system [1]–[4]. However, it does not suffice to directly
extend such coupled oscillator behaviour to DC grids as power
converters are not natural oscillators. Besides, the DC network
is reasonably linear in comparison to the AC grid. However,
coherency of responses, for instance, voltage responses could
be studied to understand the impact of topological features and
control on such responses.

Literature on the study of coherency for DC grids is almost
non-existent. Coherency implies the ability of responses to
stay within defined bounds in steady-state or during dynamic

This work was financially supported by the European Union’s Horizon 2020
research and innovation programme under Marie-Sklodowska-Curie action
INCITE – “Innovative controls for renewable source integration into smart
energy systems”, grant agreement No. 675318.

responses. In a similar vein, it is interesting to observe
the overall aggregate response of the DC grid for random
variations in system parameters such as, topology, operating
point, and control systems.

In this paper, we aim study the dynamic coherency of
meshed HVDC grids without any form of control as a first
step. In this manner we can observe the natural behaviour and
aggregate response of the DC network over time in addition
to another variable herein referred to as the control parameter.

II. METHODOLOGY FOR COHERENCY STUDY IN HVDC
GRIDS

There are several approaches to tackle the problem at hand.
The final aim is to understand how to bring the system from
one state to another, and how fast this can be done. In this
work, a statistical physics approach is presented and the focus
is on dynamics during disturbances and changes in the system.
Therefore, time plays a major role as opposed to in steady-
state where theoretically, time plays little or no role.

The statistical physics approach followed is often referred
to as order parameter analysis. Such method allows to obtain
insights into how the system transitions from one ‘phase’ to
another if there are any. Therefore, we need to observe the
natural transition in order to determine how control should
keep system in coherency state for as long as possible. It
is important to make clear at this juncture that this paper
is from a purely theoretical perspective and several concepts
might appear counter-intuitive from a practical point of view.
Justifications and clarifications would be made as necessary to
balance theory and application.

A. Order Parameter Analysis

This is a statistically dependent analysis where a set control
parameter (or external disturbance parameter) is generated
relative to the network impedances (or admittance) which
is a measure of strength of coupling. For instance, a zero
impedance (or infinite admittance) implies complete order
from a theoretical view. Whereas, an infinite impedance im-
plies complete disorder. It is important to note that infinite in
this work is relative from the perspective of impedances. For
instance, infinite impedance could refer to the impedance of



a 20, 000 km cable, which is too high to be practical, hence,
infinite. An infinite impedance could also refer to a material
of very high resistance compared, whereas zero impedance
could refer to a super-conducting material with relatively low
impedance. The former example is intuitive as the analysis in
this work is based on scaled impedances between 0− 1 with
1 as infinite impedance. Therefore, practical impedances and
that of a realistic system will be in the range 0.001− 0.05.

The method of order parameter depends mainly on generat-
ing an Rf random sets of cable resistances. Where a random
set is a vector of dimension 1 × nc and nc is the number of
cables in the system. Thus, for Rf random sets of a 3 cable
network, the total dimension of random resistances is a Rf×3
matrix, Rm. Subsequently, a deterministic vector T0 of values
between 0 − 1 of any size k (for example, k equally spaced
values) is generated; this is the vector of control parameter.
Subsequently, each element in Rm is compared with each
element of T0, the control parameter and a rule applied to
obtain a new Rm, referred to as Rp

m such that, if

Rm(i, j) > T0(k) ∀ i, j ∈ (Rf × nc)

Rm(i, j) = T0(k)
(1)

that is, any random resistance with a value greater than the
chosen element of T0 is replaced by the chosen value of T0.
This is done for all T0(k), resulting to a 3-D matrix (Rp

m) of
dimension, Rf × nc × k.

Subsequently, the system dynamic equations given in (2) is
solved for each set of nc resistances in the 3-D matrix. That is,
the time-domain solution solved for Rf × nc × k system. For
a large HVDC grid, of say fifteen cables and twelve terminals
translates to significant computational requirements depending
on the time steps of solver.

V̇ = −diag(1/C1, ..., 1/Cn)YbusV + diag(1/C1, ..., 1/Cn)I
(2)

where V is the vector of terminal voltages, I is the vector of
current injection, and C1, ..., Cn are the terminal capacitances.

III. PRELIMINARY STUDIES ON A LARGE HVDC GRID

In this section the uncontrolled dynamics of the HVDC
depicted in Fig. 1 based mainly on terminal capacitance is
modelled and equation (2) is for each set of random system
in the 3-D matrix Rp

m. Without applying the order parameter
and solving the HVDC equations for the physical system. Fig.
2 shows the theoretical response (natural dynamics) of the
HVDC grid for a balanced power flow with the same initial
conditions at all terminals.
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Abstract— Offshore wind parks are a promising technology
for renewable energies. Ideally, this parks would be connected
to the main grid using HVDC connections, which reduces line
losses. The converters necessary to connect wind farm with the
AC-System can lead to instabilities in the power system, due
to the loss of inertia. This work shows how a control scheme
for the offshore converters can lead to a inertia support of the
AC-System.

I. INTRODUCTION

The transition to renewable energies is a crucial task in
technology. Renewable energies are vital to combat climate
change, but also reduce the dependency on natural resources.
One major concern is the stability of the electrical grid,
which is challenged by the change in the topology of the
network, the introduction of new dissimilarity in the network
and the usage of new electric devices, which will reduce
the inertia and damping of the system. For many European
countries, wind energy is one of the most promising renew-
able energy source. One very popular option, especially in
the North Sea are offshore wind parks, which benefit from
the steady wind conditions on the open sea while being
less obstructive on land. Big offshore wind parks with a
capacity over 600 MW are already installed and in operation.
A major problem is the transportation of the energy to the
main land. To reduce line losses due to high resistance in
long distance lines, a HVDC link might be desirable. To
make use of a HVDC line, the current has to be converted
twice, offshore (from the AC current generated by the wind
park and onshore, to inject the current in the main AC grid.
Two major challenges arise on the conversion:
• The power electronics used in the converters don’t add

inertia to the grid
• The controllability of the wind park has to be taken to

account
In this paper, the work from [1], which incorporates a

novel control method which aims to overcome this issues is
presented and investigated.

II. MODELING BACKGROUND

A typical system which is supposed to be analyzed is
shown in Figure 1. The two AC-Sytems A and B and a wind
farm are connected by a 4 terminal DC grid. This system
was introduced in [1]. The main goal of this study is to
investigate how the converters and the wind farm influence
the frequency deviations ∆ fi of the Systems (A and B).

Felix Koeth is with G2Elab, University of Grenoble, 38031 Grenoble,
France felix.koeth@g2elab.grenoble-inp.fr

Fig. 1. Example network featuring onshore grids and an offshore wind
park.

For that, we need to incorporate control strategies for the
converters and the wind park and model the dynamics of the
main AC-Systems.

A. Onshore converters

The onshore converters are controlled using a classical
droop controllers. Here, a P−V droop is recommended
which allows the operation of the HVDC voltage control
mode. A f −V droop control scheme is also included in
the converter. This allows frequency support between con-
nected AC-Systems and the inertial response of the HVDC
link. The mathematical formulation, using the droop control
parameters k f and kp is given as:

Vdc =V re f
dc − kp

(
Pdc−Pre f

dc

)
+ k f

(
f − f re f ) (1)

B. Offshore converters

The main idea in this study is to use a communication
based control strategy for the offshore converters. Using
fiber-optic cables, the frequencies of the onshore systems
is communicated to the offshore converters. Using this in-
formation, the wind parks can react to frequency deviations
of the onshore systems and provide inertial support. Mathe-
matically, the offshore frequencies f o f f are calculated from
the frequencies of the non onshore converters using a weight
term g j as:

f o f f = f re f +
non

∑
j=1

g j

(
f j− f re f

j

)
(2)

C. Wind farm

The wind park can provide frequency support by changing
the rotor speed of the blades. Here, the inertial response for



the wind turbines is given by using modification of the power
by the derivative of the frequency variations given as:

∆P =−KI
d∆ f
dt

(3)

D. Swing equation

Using the swing equation and the fact that the power ex-
change of the HVDC grid is zero, the following incorporated
model for frequency deviations of the onshore systems i can
be calculated as:

H ′i
d∆ fi

dt
−D′i∆ fi =−P̃re f

i +
N

∑
k 6=i

(
Aik∆ fk +Bik

d∆ fk

dt

)
︸ ︷︷ ︸

Qik

(4)

The augmented inertia here is given as H ′i = 2Hi +
βino f f KI ∑

mi
j g j. Thus, the control scheme will increase the

total inertia of the AC-Systems, improving on the problem
of the low inertia in power systems with an HVDC grid. The
term Qik indicates the coupling between the AC-Grids i and
k. As frequency droop controllers are used as converters,
the AC-Systems feel a frequency response from the other
systems.

III. ANALYSIS

The resulting mathematical model (4) can be analyzed
theoretically. In [1], it was incorporated in a realistic gener-
ator model. The model can also be investigated without any
generator model. In vector form, the system is given as:

(
H ′−B

) d∆ f
dt

=−P+
(
A−D′

)
∆ f (5)

The behavior of the frequency deviations can thus be cal-
culated by the eigenvalues of the matrix (H ′−B)−1 (A−D′).
Using the system given in [1], the eigenvalues of the matrix
are always negative, so frequency variations around the
reference frequency will decline. For general systems (N >
3), positive eigenvalues where observed.

IV. OUTLOOK

The current framework focuses on the influence of the
offshore links. The behavior of the AC-Systems is ignored.
Possibility to model droop controllers in a simplified power
system model is given in [2], [3], where it was shown that
droop controllers in an AC-System behave like Kuramoto
oscillators. A future step would be to incorporate the con-
verter modeling of the offshore converters to this approach
and model the AC-System not as a single system, but a
network of generators and loads. While the general stability
properties of the AC-System ([4], [5]) should not be affected
by the droop controller with constant power, the modeling
of the HVCD network and the wind farm will influence the
dynamics of the network. For the model introduced here,
precise conditions for the stability or instability would be of
interest. For that, the properties of the matrices have to be
investigated in detail and parameter ranges for the involved

parameters have to be found. General questions about how to
use general, simplified control schemes and their interaction
with complex power systems is still ongoing. While the
damping term in the swing equation already provides a
frequency regulation, a more complex control scheme, like
the one introduced here might be interesting.
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Wind farms control strategies for grid support

Sara Siniscalchi-Minna, Mikel De-Prada-Gil and Carlos Ocampo-Martinez

I. INTRODUCTION

Wind farm control strategies are commonly focused on
maximizing total energy yield or increasing the lifetime
of wind turbines though mechanical load reduction. Ad-
ditionally to the previously mentioned objectives, wind
farms are more frequently asked to participate in ancillary
services, so far relied on conventional power plants, due
to the increasingly wind energy penetration level into the
electrical grid [1]. Wnd turbines do not inherently provide
these services, but advanced control strategies have been
proposed for wind farms and wind turbines to regulate both
active and reactive power in order to contribute to power
system stability by providing support for grid voltage and
frequency. For example, it is required for wind farms to
participate in frequency control providing the power balance
after frequency deviations. In Figure 1, it is shown the
effect of including non-synchronous generators, such as wind
turbines, in an electrical grid previously dominated by syn-
chronous generators and the improvement achieved providing
frequency support with wind farms. Conventionally, grid
frequency response is divided into separate control regimes:
inertial, primary and secondary responses. The wind turbines
can take part in inertial frequency support releasing, within
milliseconds, the kinetic energy stored in the rotating mass
during the normal operation. Likewise, in case of high wind
energy generation, wind farms can also participate in primary
frequency control delivering extra active power, (i.e. the
power reserve) within seconds by operating in de-loading
mode. Thus, wind farms can meet the grid requirements
and generate less power than the maximum available to
guarantee the demand. This work focuses on increasing the
power reserve that can be delivered into the grid whilst
accomplishing the TSO requirements. Previous works have
shown that this objective can be achieved by redirecting the
flow around downstream turbines applying either induction
or yaw control. Several computational fluid dynamics simu-
lations and wind tunnel experiments have shown that those
methods can increase power without substantially increasing
turbine loads [2]–[4]. The most common approach is to use
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Robòtica i Informàtica Industrial (CSIC-UPC), Llorens i Artigas, 4-6, 08028
Barcelona, Spain. {ssiniscalchi,cocampo}@iri.upc.edu

This work has received funding from the European Union’s Horizon 2020
research and innovation programme under the Marie Skodowska-Curie grant
agreement No 675318 (INCITE).

Fig. 1. Frequency drop and wind energy frequency support.

a centralized control strategie but however this breaks down
when the individual turbines are unavailable. Additionally
in large wind farms the high number of information sharing
between the turbines and the central controller could reduce
the performance for on-line optimization. To cope with this
issue, a decentralized optimization frame-work is proposed
in this work to enable real-time optimization, which is much
more difficult to achieve using centralized techniques. This
work demonstrates that a wind farm can be modeled as a
distributed system by partitioning it into subsets according
to wake interactions.

II. DECENTRALIZED CONTROL STRATEGY

A wind farm can be represented as a directed network,
wherein each turbine represents a node in the network and the
aerodynamic interactions between turbines due to the wake
effect can be represented as edges of this directed network
[5]. The wind farm is a directed network because actions
of the upstream turbines affect the downstream turbines, but
downstream turbine actions do not affect upstream turbines.
For the wind farm problem, the strength of each edge is
assigned based on the strength of the wake impacting the
downstream turbine (see Figure 2). The strength between
an upstream turbine i and the downstream turbine j is deter-
mined by: distance downstream xi j, area overlaped As,i based
on thresholding, and wind turbine characteristic r0,ri,A0 [6].
The edge strengths are defined as:

εi j(φ) =

∣∣∣∣ r0

ri(xi j)

∣∣∣∣ As,i(φ)

A0
, (1)

Based on these strengths, a wind farm can be divided
into subsets. The partitioning problem is stated to find the
optimal set of partitions such that the following objectives
are ensured: 1) Minimize the edges between different par-
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Fig. 2. Wake expansion.

Fig. 3. Wind farm hierarchical control scheme.

titions.This objective may be ensured maximizing the cou-
plings among the turbines caused by the wake propagations.
2) Minimize the distance among the turbines belonging to
the same partition. This objective is added to ensure unique
solution when no wakes affect the downstream turbines. 3)
Minimize the difference between the amount of turbines in
the partitions. The aforementioned objectives are hierarchi-
cally prioritized to find the optimal partition by solving a
mixed-integer multi-objective optimization problem. Mean-
while, the proper number of subsets is evaluated according
to the wind farm layout and the dominant free-stream speed
direction such that the turbines affected by the same wake
effect are included in the same partition.

Control Scheme: The hierarchical wind farm decentralized
control scheme is shown in Figure 3. The wind farm control
operates at two-time scales. According to the variation of the
dominant free-stream wind speed in the time-frame of several
minutes, the optimal partitions are updated, while the active
power control acts within seconds in order to ensure the
grid requirements. In fact, a central unit receives the power
demand profile Pdem required by the TSO and, according to
the information exchange with the local controllers, which
are available power in the partition Pl

av and power generated
Pl

g for l ∈ K, computes the power references to be addressed
to the local controllers Pl

ref. Hence, in order to generate
the desired power, each controller sets the power set-points
for the turbines within the partition Pr,i, i ∈ V l according to
the available and generated powers of every single turbine.
In this work, a de-loading active power control strategy
is proposed to guarantee two objectives: 1) dynamically
tracking the power demand profile required by the TSO, 2)
regulating the power references for each partition and the
power set-points for each turbine such that the power reserve
of the wind farm is improved.

In order to reduce the power losses due to the wake
effects, an heuristic power dispatch approach to distribute
the power demanded by the grid among the partitions may
be focused on prioritizing the power generation of those
partitions that can provide more power, i.e., the partitions
with low number of downstream turbines. Meanwhile, the
power contribution of the partitions more affected by the
wakes should be set to ensure de-loading operation. In order
to ensure the aforemetioned power dispatch approach, the
controller in the central unit solves a linear programming
problem presented in [2].

The main objectives of the local controller are: O1) Ensure
the power reference sent by the central unit. O2) Distribute
the power set-points among the turbines in order to maximize
the available power (i.e. the power reserve) of each partition.
In order to satisfy the aforementioned objectives, the model
predictive control strategy presented in [7] is implemented
for each local controller.

The proposed control strategy was evaluated for a wind
farm with 30 benchmark NREL-5MW wind turbines. The
results show that the mean value of power reserve obtained
with the proposed approach results to be increased about
11,5% with respect to the centralized strategy.

III. ON-GOING WORK

Preliminary results have indicated that additional benefit
can be obtained with distributed control strategy. In this case,
the computational cost when compared to solving a fully
centralized optimization can be reduced providing similar
power gain results. Reducing the computational cost of the
overall optimization problem allows for these wind farm
control strategies to be deployed in real time. Moreover, in
[3] it has been shown that the presented optimization-based
control strategy can also minimize the electrical power losses
in the electrical connections among the turbines; thus, an
additional step of the present work is to compute both active
and reactive power flows to evaluate such losses.
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Abstract—   The paper deals with the optimization of the 

operation of a local energy system consisting of photovoltaic 
units, energy storage systems and loads aimed at minimizing the 
electricity procurement cost. The paper describes the generation 

of the scenarios, the construction of the scenario tree and an 
alternative to the final scenario tree reduction. Moreover, an 
intraday decision-making procedure based on the solution of the 

multistage stochastic programming was introduced to perform 
the numerical tests, in order to evaluate the implemented 
approach. An extended version of the paper has been presented 

in [1] 

Keywords—Energy scheduling; Local energy system; Mixed 

integer linear programming; Stochastic programming; Scenario 

reduction; Monte Carlo method; Kinetic Battery Model. 

I.  INTRODUCTION  

The considered system includes a photovoltaic (PV) unit 
capable to provide a significant part of the local energy 
consumption and an energy storage unit to fully exploit the 
available renewable energy source even for the case of a 
limited capability of the external utility network to which the 
system is connected. 

We focus here on the solution of the day-ahead scheduling, 
which is in general associated with a real time control of the 
integrated PV-storage system, as dealt with in e.g., [2],[3]. A 
typical aim of the energy management system is the minimiza-
tion of the power exchange with the external network to feed 
the internal load in a time horizon T.   

II. MULTISTAGE STOCHASTIC OPTIMIZATION PROCEDURE 

We assume that both the load profile and the PV generation 
are uncertain, whilst, to limit the complexity of the model, the 
prices (in €/kWh) of the energy exchanged with the external 

grid are assumed known ( imp

tp  and exp

tp , bought and sell, 

respectively). 

The decision variable is the battery power output
b

tP  and 

the objective function is the minimization of the energy pro-
curement costs. The decision is taken at the beginning of the 
day (which is the scheduling horizon) for all the periods of the 
first 6 hours and the decision is updated every 6 hours. The five 
moments when the decision is taken represent the stages of the 
problem. The values of the other variables are calculated at the 
end of each 6 hour periods. 

The five-stage stochastic optimization problem needs a 
scenario tree model that is built by using the k-means clustering 
method.  

In the following, we describe the procedures adopted for 
the generation of set  of initial scenarios Ω, for the construction 
of the scenario tree that is used in the recourse model, and the 
intraday decision-making procedure that uses both the day-
ahead solution of the multistage stochastic problem and the 
knowledge of the actual PV generation and load request. 

A. Generation of scenarios 

For the scenario generation, we have applied the procedure 
described in e.g. [4], which includes a Markov-process to 
represent the autocorrelation that exists between consecutive 

observations. Starting from the forecasted profiles 
pv

tP  and 

load
tP , at first they are normalized by using the corresponding 

mean value and standard deviation; then, for each scenario ω, 

the normalized time series pv

ty  and load

ty  are given by 

  
, ,

, , 1 ,

t t t

t t t

z x y

x x

 

   

 

  
 (1) 

where ϕ is the one-lag autocorrelation parameter, assumed to 

be equal to 0.999, and 
,t  is a Gaussian white noise with 

mean zero and standard deviation 21  .  

The PV production and load profiles for each scenario ω ( ,
pv

tP  

and ,
load

tP ) are obtained by applying the inverse transform 

method assuming a normal distribution, with the constraint 

that both profiles cannot be negative and that the difference 

between each profile and the corresponding forecast should 

not exceed 20% (in all the periods for the load and 75% of the 

periods for PV production). 
 

B. Construction of the scenario tree  

Each of the generated scenarios is assumed to be equiprob-
able and it is defined by the normalized difference between the 
PV production and the load. 

The scenario tree is built by the consecutive application of 
the k-means clustering method, as described in e.g. [5].  

As an additional alternative to reduce the number of final 
scenarios in the tree, a reduction of the centroids at each stage, 
based on their probability and the similarity to other centroids 
into the same stage was implemented [6]. Firstly, the 

probability of each centroid ik

s  is compared with the average 

value of the probabilities of the others centroids present in the 

stage ik

ref , if the value is lower than a defined percentage (20% 
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in our simulations) of the reference value of probability, then 
the centroid is candidate to be removed: 
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All the scenarios of the cluster represented by the removed 
centroid are reassigned to the closest cluster, according to the 

minimal value of the Euclidean distance weighted for ik

ref : 

 

2

min ( , )   1...  

      ( , )    

i

s

k i j

ref t t

i j i j

t t t t

t T

d k k i K

d k k k k





    

 
 (3) 

C. Intraday decision-making procedure 

 The solution of the day-ahead recourse model provides 
multiple possible decisions at each stage following the first one 
(i.e., during the day). Therefore, for the actual operation, a   
decision-making procedure is needed for the choice of the most 
appropriate decision at each stage among those indicated by the 
stochastic problem solution, on the basis of the current PV 
generation and load. 

At each stage, the decision-making procedure finds the 
scenario of the tree that is the most similar to the profile of the 
difference between PV generation and load in the previous 6 
hours, on the basis of the Euclidean distance, among those 
scenarios directly connected to the tree node chosen in the 
previous stage. Then it decides the set point values of the 
battery power output for each 15-minutes time intervals of the 
following 6-hours. 

III. NUMERICAL TESTS    

The optimization procedures have been implemented in 
AIMMS Developer and tested by using the Cplex V12.8 MIP 
solver on 2-GHz processors with 8 GB of RAM, running 64-b 
Windows.  

Table I compares the OF values of the stochastic solution 

of two models   the one simple battery representation and the 
one including the more refined kinetic battery model (KiBaM) 

 by using the scenarios trees obtained through the k-means 
clustering procedure (with 3 and 4 centroids) applied to 200 
initial equiprobable PV generation and load profiles.  

TAB. I SP SOLUTIONS AND METRICS FOR THE CASE WITH A 630 kWh 

BATTERY.  

Battery model Simple KiBaM 

Number of centroids 3 4 3 4 

OF (€) 38.02 38.25 61.67 61.80 

VSS (€) 2.59 2.84 1.11 1.12 

EVPI (€) 0.85 1.08 0.47 0.56 

Number of scenarios in the tree 64 139 64 139 

Solution time (s) 1.54 2.97 3.47 8.26 

 Table I also shows the Value of Stochastic Solution (VSS) 
and the Expected Value of Perfect Information (EVPI), which 

are widely used metrics of the performance of using SP models 
[7]. 

VSS is the difference between the expected value solution 
(EEV) and the stochastic solution (i.e., the OF value). EEV is 

obtained by a two-step calculation: at first, the values of 
b

tP  

for each t are given by the solution of the deterministic model 
obtained by replacing all random variables by their expected 

values; then, these 
b

tP  are set as a fixed parameters and EEV is 

given by the solution of the stochastic problem. 

EVPI is the difference between the stochastic solution and 
the wait and see (WS) solution. WS is the expected value of the 
deterministic solutions of each scenario in the tree. 

As expected, the higher the number of centroids the longer 
the computational effort due to the enlargement of the tree, as 
shown by the comparison of the solution times and the number 
of scenarios in the trees reported by Table I for K=3 and K=4. 
However, a more detailed clustering increases the VSS, even 
with an initial set of scenarios not very large with respect to the 
final dimensions of the tree.  

Table I shows that the use of the more refined model of the 
battery increases both the OF values and the computation time, 
as expected. 

Table II shows the average values of the following 
differences for the scenarios of the tree, for the initial set of 200 
scenarios, and for 50 scenarios different from those of the 
previous set: 

SP-MC  difference between the OF values given by the 
intraday decision-making procedure and the Monte 
Carlo solution; 

SP-WS difference between the OF values given by the 
intraday decision-making procedure and the 
deterministic solution. 

TAB. II.  COMPARISON BETWEEN SP AND MONTE CARLO SIMULATIONS AND 

BETWEEN SP AND DETERMINISTIC SOLUTIONS (630 kWh BATTERY). 

Battery model Simple KiBaM 

Number of centroids 3 4 3 4 

Scenarios tree 
SP – MC -2.51 -2.55 -0.71 -0.69 

SP – WS 0.97 1.13 0.55 0.60 

Set of initial 

scenarios 

SP – MC -2.05 -2.47 -0.23 -0.34 

SP – WS 5.17 2.70 1.81 1.70 

Set of new 

scenarios 

SP – MC -2.28 -2.29 -0.26 -0.24 

SP – WS 4.85 4.84 1.91 1.92 

The results of Table II show the advantage of using the SP 
and the benefit of a more accurate clustering procedure. 

Finally, in order to show the performance of the SP 
approach using the additional alternative to reduce the number 
of final scenarios in the tree, the results of the numerical tests 
are summarized in Table III (OF values and metrics) and Table 
IV (comparison between SP and Monte Carlo simulations and 
between SP and deterministic solutions). 



 

 

 

TAB. III SP SOLUTIONS AND METRICS FOR THE CASE WITH THE ADDITIONAL 

REDUCTION OF THE TREE.  

Battery model Simple KiBaM 

Number of centroids 3 4 3 4 

OF (€) 37.98 38.25 61.67 61.77 

VSS (€) 2.55 2.77 1.08 1.12 

EVPI (€) 0.82 1.08 0.45 0.53 

Number of scenarios in the tree 53 137 53 137 

Solution time (s) 1.05 2.94 2.45 7.33 

TAB. IV.  COMPARISON BETWEEN SP AND MONTE CARLO SIMULATIONS AND 

BETWEEN SP AND DETERMINISTIC SOLUTIONS (TREE REDUCTION). 

Battery model Simple KiBaM 

Number of centroids 3 4 3 4 

Scenarios tree 
SP – MC -2.53 -2.69 -0.77 -0.80 

SP – WS 0.87 1.09 0.49 0.56 

Set of initial 

scenarios 

SP – MC -2.16 -2.30 -0.41 -0.48 

SP – WS 5.17 2.87 1.78 1.71 

Set of new 

scenarios 

SP – MC -2.36 -2.56 -0.45 -0.49 

SP – WS 4.77 4.57 1.85 1.81 

The results confirm the advantages of the SP. The use of 4 
centroids increases the VSS, as expected, and, allows improved 
results. 

IV. CONCLUSION 

Multistage SP represents an attractive method for the day 
ahead scheduling in local energy systems and provides 
improved results with respect to the application of the Monte 
Carlo method. 

The construction of the scenario tree needs to be addressed 
properly. The k-means clustering provides appropriate results 
even with a limited number of centroids. The computational 
effort is reasonable for the considered five-stage SP problem. 

The SP approach is also applicable to models that include a 
detailed representation of the battery under the assumption that 
the mixed integer linear programming characteristics of the 
model are preserved.  
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A fault detection and localization method for LV distribution grids

Nikolaos Sapountzoglou*, ESR 4.2, Bertrand Raison* and Nuno Silva**

Abstract— A fault detection and localization method for
low voltage (LV) distribution grids is described in this paper.
The details of a real case LV grid were provided by Efacec.
Single-phase and three-phase short circuit (SC) faults were
studied in different hours during the day (at 10 and 16 [hours])
and for various fault resistance values (0.1, 1, 5 and 10 [Ω]).
A method based on the form of the voltage curves during the
steady state of the faults was developed. Simulations were run
in the MATLAB/Simulink environment to validate the method.

Index Terms— Fault detection, Fault localization, LV grid

I. INTRODUCTION

For the purpose of this study, a real case semi-rural radial
LV grid of Portugal was used. It is a three-phase-four-wire
grid with a solidly grounded neutral, consisting of three
main feeders and a total of thirty three nodes with 15
microgenerators (single-phase PV installations) and twenty
eight single-phase loads. The single line diagram of the
LV distribution grid is presented in Fig. 1 along with the
available measurements and the fault locations under study.

current measurement

fault location

load

micro-generation voltage measurement

Fig. 1: Single line diagram of the LV grid with the SC fault cases.
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Eleven different types of conductors connect the nodes
with each other with a maximum length of 210 [m]. The
microgeneration and load profiles for one day are given in
Fig. 2.
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(a) Microgeneration profile
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(b) Load profile

Fig. 2: Grid characteristics

II. FAULT DETECTION

For the detection of a fault occurrence, current mea-
surements at the transformer level were used. In order to
detect an anomaly, the derivatives of the phase currents were
monitored. A sudden increase of the absolute value of the
derivative of the current, indicated the fault occurrence. The
absolute value was used because in some fault cases with
high fault resistance (10 [Ω]), a small decrease instead of
the expected increase in the current was observed. Moreover,
the algorithm is able to detect evolving faults, a typical case
being the evolution of a single-phase to ground fault into
a three-phase fault, by tracking the behavior of the current
in all three phases. Once the fault is detected, the fault
localization part of the algorithm is initiated. The steady state
of the fault is analyzed.

III. FAULT LOCALIZATION

The fault localization algorithm is divided in three steps:
a) faulty branch localization, b) faulty sector localization
and c) fault location calculation. The branch of a grid is
defined as a unique line path from the transformer to each
terminal node (branch 1: from 1 to 29). At the same time, the
sector is defined as the part of the grid between two available
measurements. In this case, since voltage measurements are
available at each node, the sector is the line connecting two
adjacent nodes (sector 1: from 1 to 2).

A. Faulty branch localization

The faulty branch localization is split in two parts. In
order to identify the faulty branch of the grid, current
measurements at the beginning of each feeder were neces-
sary. The use of voltage measurements alone could lead to

mailto:nikolaos.sapountzoglou@g2elab.grenoble-inp.fr
mailto:bertrand.raison@g2elab.grenoble-inp.fr
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false alarms due to misslocalization of a fault (especially
in high fault resistance cases where the voltage drop is
not significant and load contribution may conceal the fault
occurrence). Hence, the first part consists in identifying the
faulty feeder. Once again, a sudden increase of the absolute
value of the derivative of the phase current was used. When
the faulty feeder is identified, the algorithm proceeds with
the localization of the branch within the selected feeder.
The branch to which the node with the lowest voltage
belongs was considered as the faulty branch. Finally, it was
observed that among the available measurements (phase and
symmetrical components) the positive sequence component
of the voltage was the most reliable.

B. Faulty sector localization

The positive sequence component of the voltage across
a faulty branch is presented in Fig. 3. In this example, the
fault is a three-phase SC of 1 [Ω] fault resistance occurring
at 10h01m00s; the fault is located in the 5th branch (from
node 1 to node 30 in Fig. 1) and in the middle of the 5th
sector (between the nodes 19 and 26). As stated before, the
faulty branch is the one with the highest voltage drop within
the feeder.

The localization of the sector under fault is achieved
through the comparison of two consecutive voltage measure-
ments, ideally corresponding to two adjacent nodes. From the
linearly interpolated curve of the voltage in Fig. 3, it can be
observed that the voltage constantly decreases up to the next
measurement after the point of fault occurrence. After, the
faulty sector (presented with a red line in Fig. 3) the curve’s
slope decreases to a value close to zero. Extreme cases where
the voltage increases again after the faulty sector were also
noticed.

In order to cover the vast majority of the fault cases, the
two following criteria were developed in order to detect the
faulty sector:
1) if the difference between two consecutive voltage mea-

surements is positive, signifying a change in the sign of
the slope, then the previous sector is the one under fault
and

2) if the absolute value of the difference between two
adjacent voltage measurements is the lowest within the
branch, signifying a stabilization of the curve, then the
previous sector is the one under fault.

C. Fault location calculation

After both the branch and the sector under fault are
identified, the only thing left is to calculate where inside
the sector has the fault occurred. Returning to Fig. 3, by
linearly extrapolating the lines consisting the previous and
the following sectors of the one under fault, it becomes
possible to find their intersection point. Therefore, this point
corresponds to the location of the fault. For the example of
Fig. 3, the fault was found to be located 405 [m] away from
the transformer while in reality it was located at 410 [m].
The deviation of the method in locating the fault was, in this
case, 5 [m].
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Fig. 3: Voltage profile snapshot across a faulty branch (between nodes 19
and 26) for a SC three-phase fault of 1 [Ω] fault resistance at 10h02m01s.

IV. RESULTS

The MATLAB/Simulink environment was used for the
simulations and the development of the method. Two cate-
gories of faults were studied: a) single-phase to ground faults
and b) three-phase faults. Simulations with faults occurring
at two different times during a day were executed: a) at
10h01m00s (73% of microgeneration) and b) at 16h01m00s
(14% of microgeneration). Additionally, for each of the
above cases four types of fault resistance were investigated:
a) 0.1 [Ω], b) 1 [Ω], c) 5 [Ω] and d) 10 [Ω].

The method was found to be almost 100% accurate
(95,56% for single-phase faults and 100% for three-phase
faults) in detecting the fault and identifying the faulty feeder,
branch and sector for faults located relatively far from the
transformer (blue markers in Fig. 1). For faults located closer
to the beginning of the feeder (green markers in Fig. 1),
where faulty sectors belong to multiple branches, the method
was 50% accurate. This error derives from the fact that
the wrong branch was selected for the identification of the
faulty sector. Another conclusion that was drawn is that the
precision of the method decreases with the increase of the
fault resistance. Additionally, the level of participation of
microgeneration does not seem to affect the results of the
method. Finally, due to the nature of the method -linear
extrapolation- at least three consecutive measurements inside
a branch are needed to identify a faulty sector, meaning that
faults can not be correctly identified if they are found in the
first or the last sector.

V. CONCLUSION & FUTURE WORK

A fault detection and localization method was developed
for a real LV distribution grid of Portugal provided by Efacec.
Further analysis is needed in order to increase its accuracy
for the faults close to the beginning of the feeder. An
alternative to the linear interpolation method for the creation
of the voltage curve, could be the use of the least squares
method. As a last step, measurement perturbations will be
implemented to test the sensitivity of the method.



Stochastic Optimal Power Flow in Distribution Grids under
Uncertainty from State Estimation

Miguel Picallo, Adolfo Anta and Bart De Schutter

I. INTRODUCTION

The increase of distributed generation and controllable
loads presents many advantages for the distribution grid
but at the same time requires new techniques to guarantee
a proper operation. To face these new challenges, optimal
power flow (OPF) strategies from transmission grids are
being adapted to distribution grids.

The OPF is dependent on the state of the grid (voltages,
currents, loads, etc.), which at the distribution level is only
partially known. While enough sensors are usually available
in transmission grids, this is not the case for distribution
grids, where state estimation (SE) algorithms [AE04] are
necessary. These SE algorithms provide an estimation of the
variables of interest, with a certain degree of uncertainty.
Ignoring this uncertainty in SE could lead to voltage limit
violations. Some papers introduce chance constrained opti-
mization methods to account for the uncertainty in the loads
and generation [SWML15], [DBS17].

II. STATE ESTIMATION

We consider a standard SE algorithm [AE04] that provides
an unbiased estimation of the network voltages Vest ∈ CN ,
Vest,rect = [<{Vest}T ,={Vest}T ]T ∈ R2N in rectangular coor-
dinates, and a covariance matrix representing its uncertainty
Σest,rect ∈ R2N×2N [PAPS18]. This uncertainty is mainly
caused by sensor noise and uncertainty in load predictions.
The true voltages before applying the OPF are:

Vprev,rect ∼ N (Vest,rect,Σest,rect) = Vest,rect + Σ
1
2
est,rectN (0, Id)

(1)

III. STANDARD OPTIMAL POWER FLOW

In this paper, we consider as controllable elements
the distributed generation sources at the distribution level
{(Pi, Qi) | i ∈ Vren}, where Vren denotes the set of
nodes with distributed renewable energy sources; and the set
points of the voltage tap changers for every phase φ in the
transformers atap,φ ∈ {atap,min, ..., atap,max}. For simplicity,
the objective is to minimize the total amount of energy
required from the substation Ssrc. The safety conditions are
given by the limits for the voltage magnitudes |V |:
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Objective: min
∑
φ Psrc,φ +Qsrc,φ (2a)

Constraints:
Power flow:[

Ssrc
S

]
= diag

([
Vsrc
V

])
Ȳ (atap)

[
V̄src
V̄

] (2b)

Tap changers: ∀φ ∈ {1, 2, 3} atap,φ ∈ {atap,min, ..., atap,max}
(2c)

Available energy: ∀i ∈ Vren
Pmin,i ≤ Pi ≤ Pmax,i, Qmin,i ≤ Qi ≤ Qmax,i

(2d)

Voltage limits: ∀i ∈ {1, . . . , N} |V |min ≤|Vi| ≤|V |max
(2e)

where |V |max ,|V |min denote the voltage magnitude limits,
Pmax,i, Qmax,i, Pmin,i, Qmin,i,|S|max,i denote the available
energy limits at node i, and Y (atap) denotes the admittance
matrix as a function of the vector of voltage tap changers atap.
The variables to optimize are then the power supplied by the
substation and the renewable energy sources Ssrc, {(Pi, Qi) |
i ∈ Vren}, the voltage tap changers atap, and the voltages
V and Vsrc. Among the variables, the control elements are
atap, {(Pi, Qi) | i ∈ Vren} and Vsrc, while Ssrc and V are
determined by the constraints. The loads at the rest of the
nodes {(Pi, Qi) | i /∈ Vren} are inputs to the OPF problem,
and are typically measured or estimated.

IV. STOCHASTIC OPTIMAL POWER FLOW

There are some problems with the OPF representation in
(2): (i) The power flow equation in (2b) is nonlinear and
nonconvex and thus difficult to handle. (ii) In (2b), both all
voltages and the loads in the nodes other than the substation
and the renewable sources: {(Pi, Qi) | i /∈ Vsrc∪Vren}, where
Vsrc denotes the set of nodes in the source bus. known. (iii)
There is a degree of uncertainty in the SE with covariance
matrix Σest,rect, that needs to be considered in the voltage
limits in (2e).

A. Transformer Approximation
In order to include the tap changers more efficiently and

to simplify Y (atap) in (2b), we assume electrical isolation
at the transformers and thus consider different subsystems
related by the tap changers equations similar to [RZDG16]:[

Ssrc
S

]
= diag

([
Vsrc
V

])
Ȳisol

[
V̄src
V̄

]
Vtf2 = diag(atap)Vtf1, 0 = Stf2 + Stf1

(3)

where Vtf- correspond to the nodes of the transformer for each
subsystem, Yisol is the admittance with isolated subsystems.
We also consider a continuous tap changer: φ, atap,φ ∈
[atap,min, atap,max].



B. Power Flow Approximation
We use a first-order linear approximation of (2b) around

the estimated voltage states Vest:[
∆Ssrc

∆S

]
= diag

([
∆Vsrc
∆V

])
Ȳisol

[
V̄src,prev
V̄est

]
+diag

([
Vsrc,prev
Vest

])
Ȳisol

[
∆̄V src
∆̄V

]
∆Vtf2 = diag(atap,prev)∆Vtf1 + diag(Vtf1,prev)∆atap

0 = ∆Stf1 + ∆Stf2

(4)

where for every x = {S, V, atap}, ∆x = x−xx represent the
change of values after the optimization process.

Remark 1: We consider that the optimization process is
fast enough, so that the loads remain constant: ∆Si = 0 for
i /∈ Vsrc ∪ Vren ∪ Vtf1 ∪ Vtf2, where Vtf1,Vtf2 denote the set of
nodes on the transformer. This allows to bypass the lack of
load measurements.

C. Stochastic Voltage Limits
Since we have a SE with uncertainty (1), the voltage after

the optimization step V , Vrect = [<{V }T ,={V }T ]T is:
Vrect ∼ N (∆Vrect + Vest,rect,Σest,rect) (5)

Then,instead of a deterministic voltage limit constraint like
(2e), we have a stochastic one:

P (|V |min ≤|Vi| ≤|V |max) ≥ β ∀i (6)
where β is a threshold probability level. We use the following
theorem to reformulate (6):

Theorem 1: For all β ∈ (0, 1), there exists α such that if
the following constraints holds for all i:

(<{∆Vi}+ <{Vest,i} ± α(Σest,rect,<)
1
2
i,i)

2

+(={∆Vi}+ ={Vest,i} ± α(Σest,rect,=)
1
2
i,i)

2 ≤|V |2max

(<{∆Vi}+ <{Vest,i} ± α(Σest,rect,<)
1
2
i,i)
<{Vest,i}
|Vest,i|

+(={∆Vi}+ ={Vest,i} ± α(Σest,rect,=)
1
2
i,i)
={Vest,i}
|Vest,i| ≥|V |min

(7)
then (6) is satisfied. We use ± to denote all possible
combinations to represent all constraints.

Furthermore, α can be found using standard tables for
Gaussian distributions by choosing α such that

P (|ω̃| ≥ α) ≤ 1− β
4

, for ω̃ ∼ N (0, 1) (8)

D. Final OPF
Using Thm. 1 we can rewrite (6) into a convex determin-

istic constraint, so that it can be integrated into our OPF
problem:

Objective: min
∑
φ Psrc,φ +Qsrc,φ (9a)

Constraints:
Power flow: (4) (9b)

Tap changers: atap,φ ∈ [atap,min, atap,max], ∀φ ∈ {1, 2, 3}
(9c)

Available energy:
Pmin,i ≤ ∆Pi + Pprev,i ≤ Pmax,i, ∀i ∈ Vren
Qmin,i ≤ ∆Qi +Qprev,i ≤ Qmax,i, ∀i ∈ Vren

(9d)

Voltage limits: (7) (9e)

Fig. 1: Voltage magnitude |V | profiles for all nodes along the
day for case 1 and 2: with and without taking into account
the covariance of the SE for the OPF respectively. The red
dashed lines represent the limits.

where now the variables to control are ∆atap, {(∆Pi,∆Qi) |
i ∈ Vren} and ∆Vsrc, while ∆Psrc, ∆Qsrc and ∆V are
determined by the constraints. All previous values before the
optimization step, atap,prev, Pprev,i, Qprev,i, Sprev,i, are stored
from the control step before the current one, and Vest and
Σest,rect are given by the SE.

V. CASE STUDY

A simulation of 24 hours with 15 min intervals is run on
the 123-bus test feeder available online [Ker91] to test the
effectiveness of the methodology.

We have compared the resulting voltage magnitudes when
controlling the transformer and the introduced energy in two
cases: in case 1, we take the uncertainty into account, using
the covariance to ensure the voltage limit constraints; while
in case 2, we are using the voltage estimates as if they were
the true values, without taking into account the covariance.
It can be observed in Fig. 1 that case 1, using the covariance,
performs much better than case 2 in controlling the voltage
magnitudes within their limits.
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A multi-period Optimal Power Flow scheme for Low Voltage Distribution
Networks

ESR 4.4 Advanced functionalities for the future Smart Secondary Substation

Konstantinos Kotsalos, Nuno Silva, Ismael Miranda and Helder Leite

Abstract— This work aims to propose a three phase multi-
period Optimal Power Flow (OPF) framework for the coordination
of multiple Distributed Energy Resources (DER) in low voltage
distribution grids. The proposed scheme considers forecasted
information for load and renewable generation, in addition to
the demand flexibility, and derives possible scheduling of multiple
controllable assets such as battery storage system (BSS), electric
vehicles and deferrable loads. The proposed methodology leans
on a multiperiod Optimal Power Flow scheme, which is addressed
either as a non-linear optimization problem or a linear one in case
binary control variables are assigned. In this document a brief
description of the BSS temporal model is presented. The main
target of this tool is to take advantage of the flexibility given by
DER to ensure cost-effective and within statutory limits operation
of the LV grid.

I. INTRODUCTION

The increasing integration of DER along the distribution
networks pose several technical challenges, which can be ad-
dressed by the active management of such resources. Dis-
tribution System Operators (DSOs) are currently increasing
the observability and controllability of the grids, envisioning
the active management of the DERs for ancillary services,
throughout new operation stages.
Recent studies have addressed the possibility of considering
Low Voltage (LV) controllable assets beyond DSO assets,
such a distributed battery storage system, controllable loads
under demand response schemes and micro-generation units [1].
Particular focus has been given in aggregating flexible resources
connected along the LV grid to support the operation of MV,
by considering the LV grid as a flexible cluster [2]. Advanced
methodologies need to be implemented to determine control ac-
tions related to controllable DER, that can techno-economically
improve distribution networks operation delivering benefits to
residential users.
Previous implementations were focused on the scheduling of
the controllable units based on a sequential scheme [3]. This
tool provided a scheduling of the resources ensuring voltages
within the admissible limits.
In this work, a description of the structured DER models
is presented along with their temporal coupling along the
optimization horizon. A fully coupled multi-period OPF scheme
is proposed considering the multiphase unbalanced nature of the
LV grids. The contribution of this work is to propose a flexible
operational tool, which provides support to the DSO for the
efficient coordination of DER in a centralized manner.

II. PROBLEM STATEMENT

In this section, the multiperiod three-phase OPF is stated for
an horizon of operational planning Ht. The objective function

This project has received funding from the European Unions Horizon 2020
research and innovation programme under the Marie Skodowska-Curie grant
agreement No 675318 (INCITE).

f(X) is to minimize the operating costs assigned with all the
controllable assets providing their coordination, based on their
availability. Furthermore, an additional storage degradation cost,
can be attributed to the objective function as an affine function
expressed with a linear combination of the storage powers.
In this work all buses are considered to have three terminals,
where each one represents the phase connection point, a, b, c.
The latter implies that for bus j, the voltage magnitude is
given by the real vector vj ∈ R3, vj = [vj,a, vj,b, vj,c]

T , and
accordingly the voltage angles by the real vector θj ∈ R3.
For the multiperiod formulation, assuming that the decision
variables at the time instant τ is correspond to the vector xτ ,
which is defined as follows:

xτ =


Θ
V
Pg
Qg


τ

,∀τ ∈ T , xτ ∈ R(2∗3nb+2∗nc) (1)

where nb refer to the number of buses and nc the controllable
units. The real vector Θ = [θ1, θ2, . . . , θnb

]T correspond to the
angles of each bus, and respectively V ∈ R3·nb to the voltage
magnitudes, , V = [v1, v2, . . . , vnb

]T vj = [vj,a, vj,b, vj,c]
T .

The setsN ,J , T , denote the buses, branches and the horizon of
the multi-period scheme. Let us consider the set of controllable
assets U := {u1, . . . , unc}, described by the control vector u,
comprised by active and reactive power set points, Pg, Qg .
Therefore, for the overall optimization problem the decision
variables correspond to the matrix X = [x0, x1, . . . , xHt]

T .

min f(X) = min
u

Ht∑
τ=1

nb∑
k

(
[cnc(τ)]T · uk,τ

)
(2)

subjected to

Fj(xτ , uτ ) = 0 ∀j, τ ∈ N , T (3a)
hi(xτ , uτ ) ≤ 0 ∀i, τ ∈ J , T (3b)
Vmin ≤ vj(xτ ) ≤ Vmax ∀i, τ ∈ N , T (3c)

hξ(xτ , uτ ) ≤ 0 ∀ξ, τ ∈ U , T (3d)
gξ(xτ , uτ ) ≤ 0 ∀ξ, τ ∈ U , T (3e)

where the constraints in (3a) set the power balances at each
bus of the network; the second constraint poses the nonlin-
ear constraint for the constrained lines; the boxed constraint
in (3c) to respect all nodal voltages to range strictly within
the admissible bounds. The constraints (3d)-(3e), correspond to
the operational limits of the controllable DER. The gradient
and Hessian matrix of the objective function and the non-
linear constraints are provided to the optimization solver, by
expanding the calculations presented in [4].
There is a particular concern on its performance, since the
formulation of the multi-temporal planning of operation scheme



will have augmented convergence time due to the large scaling
of the problem, in addition to the linkup of intertemporal
constraints. More analytically, flexible assets such as battery
storage systems, EVs and controllable loads, induce the ca-
pability to commit certain amount of energy and release it at
another one. The complexity of the multiperiod OPF scheme
increases proportionally to the number of buses -including each
corresponding phase- n′b = 3 · nb,the number of controllable
sources as well as the number of time steps incorporated in the
horizon time Ht.
The proposed scheme in case of assigned binary control vari-
ables resorts to the equivalent multiperiod optimization problem
by setting only power balance constraints. An additional step is
added, to validate that the control set points lead to statury
limits at all time steps. The following section, provides the
temporal description of the Battery Storage System (BSS) along
the horizon optimization.

A. Battery Storage System (BSS)

1) Model and operational constraints: The Battery Storage
System (BSS) is composed by the energy storage model and an
additional rule based control for its active and reactive power.
The energy storage is based on a first-order system, which
can follow two states the charging and discharging mode. At
the first one, the system increases its required consumption in
order to get charged, while it injects power the grid during its
discharging mode. The stored energy at the upcoming step will
be given by

e(t+1) =

{
αe(t) + Tsη1 p(t) if p(t) ≥ 0

αe(t) + Ts(1/η2) p(t) if p(t) < 0
(4)

where et is the stored energy at the time step t, α is the drain
rate of the system (i.e. for ideal BSS is 1), Ts is the sampling
time that the system is traced, η1, η2 correspond o the charging
and discharging efficiency, accordingly.
There are some operational constraints for both operation modes
of the j-th BSS as follows:

e ≤ e(t) ≤ e (5a)
p ≤ p(t) ≤ p (5b)

|p(t) − p(t−1)| ≤ prate (5c)

where constraint 5a refers to the minimum and maximum
energy of the system, 5b poses the minimum and maximum
limits of power charging or discharging, and 5c sets the power
consumption or injection rate. Including the power rate con-
straint, the power consumed or injected at the next (simulation)
step is determined as follows:

p(t) =

{
pt−1 + sign(pt − pt−1) prate if |pt − pt−1| > pr
pt else

(6)
The BSS can be dis/-charged following two different strategies
either following a droop control control proportional to the PCC
voltage, or depending the its State of Charge (SoC)

p(t) =


p if 0 < et < e ∧ pξ < p
p else if 0 < et < e ∧ pξ > p
pξ else (et = 0 ∧ pξ ≤ 0) ∨ (e = e ∧ pξ ≥ p)

(7)
where pξ a possible active control signal. Accordingly, the BSS
might have additional control functionalities for each reactive

power output control. This can be implemented by the following
function that determines the qBSS :

qBSS =

 p(t) · tan(cos−1 ∗ (θ)) if cos(θ) = constant
droop(Q, vj,φ, param.) else if droop= ON
0 else

(8)
2) Decision Variables : As described above the BSS present

a time-flexible asset that is capable injecting or consuming
power to the network from one step to the other. Therefore its
flexibility depends on taking advantage of absorbing or injecting
power at certain periods, fact which needs to be incorporated
to operational planning horizon. Assuming nbs connected along
the network, the branch function 4 can be rewritten in matrix
format capturing both operating modes as follows:

e(t+1) = I2nse(0) + ∆Ts[diag{ndis} diag{1/nch}]︸ ︷︷ ︸
Λ

·
[
pdis
pch

]
︸ ︷︷ ︸
ps(t)

(9)
The energy stored to each battery storage system towards the
evolution among the time horizon Ht can expressed as the
vector [E] = [e(0), . . . , e(Ht − 1)]T :

[E] =

 I2ns

...
I2ns

 e(0) +

 Λ 0
...

. . .
Λ . . . Λ


 ps(0)

...
ps(Ht − 1)


(10)

Therefore, the control variable for each battery storage system
corresponds to the vector ps(t). Additional options are posed
for the BSS, to include target point of the SoC at the end of the
horizon time. The temporal expression for the Electric Vehicles
is rather similar to the one described for the BSS.

B. Controllable Loads
Concerning the end-users’ flexibility several concerns can

be asserted. For the sake of simplicity hereby, the operation of
the controllable loads can be deferrable loads at some certain
time periods. Therefore, such loads can provide the flexible
amount of active power as. More sufficiently for residential
users is to assign loads which can be shifted. Due to lack of
space, the model is not thoroughly discussed in this document.

III. CONCLUSIONS

Currently, the work is focused on the improvement of the
convergence of the proposed methodology. Additional objective
terms will be examined to verify the impact on the operational
tool. The proposed scheme will be compared with an approx-
imative one which considers solely power balance equations.
Future tasks will address the incorporation of uncertainties -
related to loads and PV forecasts- in the current scheme.
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